
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Ptolemy: A Mixed-Paradigm
Simulation/Prototyping Platform in C++

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt

September 6, 1991
Dept. of Electrical Engineering and Computer Science

University of California
Berkeley, CA 94720

ABSTRACT

Ptolemy is a flexible and extensible platform for simulations, rapid prototyping, and other
software systems. It is our third generation software environment, building on our experience
with Blosim, a signal processing simulation system, and Gabriel, a prototyping environment for
real-time signal processing. Unlike its predecessors, Ptolemy does not enforce a single simula-
tion or execution model; it supports mixed hardware and software designs, mixed-mode system
descriptions, and mixed prototyping methodologies.

The objectives, design, current status, and future directions of the Ptolemy project are sum-
marized in this paper. The use of certain features of the C++ language to make it easier to design
a flexible, extensible system is discussed. We also describe our experiences in developing a
150K line (and growing) system in C++, discussing what worked well, what didn’t and lessons
learned.

1. INTRODUCTION
Ptolemy is a flexible and extensible platform for simulation, rapid prototyping, and related

design environments. Ptolemy has few assumptions built into it, and thus can be used with the
same generality as building a system from scratch. Ptolemy provides, however, a large set of
building blocks that can be used to reduce the effort of building new environments. Most impor-
tantly, Ptolemy defines a set of internal object-oriented interfaces, so that heterogeneous environ-
ments built in the Ptolemaic framework can later be easily merged as necessary.

Ptolemy was devised in an attempt to overcome some of the shortcomings of its predeces-
sors, Gabriel and Blosim, which were restricted to particular assumptions about how systems
were modelled. To preserve the advantages of the old systems while removing their restrictions,
it was clear that we required object-oriented programming methodology.

The systematic application of object oriented programming to simulation problems began
with the Simula programming language, which is one of the two ancestors of the C++ program-
ming language (the other being, of course, C). In fact, C++, or ‘‘C with classes’’, as the first



2

version of the language was called, was first used in discrete-event simulation [Str86].

While a language such as Smalltalk or an object-oriented Lisp could have been used, we
were interested in computational efficiency and also in the clean integration of signal processing
algorithms and other code written in C, so these considerations narrowed down the choice of
languages to C++ and Objective-C. The wider availability of compilers and tools for C++ at the
time the project was beginning (1989) helped to sway our final choice.

1.1. Organization of Ptolemy
The basic module in Ptolemy is the block. The entity that determines the order of execution

of blocks is the scheduler (at either compile time or run time or some combination). The combi-
nation of a scheduler and a set of blocks that conform to the behavior expected by this scheduler
is called a domain. Different models of computation (time-driven, event-driven, etc) can be built
on top of Ptolemy by simply substituting different domains. Two or more simulation environ-
ments built on Ptolemy can be combined into a single environment, thus enabling heterogeneous
simulations of large systems that combine different schedulers and computational models. New
domains are easily added to Ptolemy, including domains that do not conform to the
block/scheduler model. In addition, new blocks and domains may be added to a running system
by means of incremental linking.

Previous simulation systems have a fundamental model of computation and scheduling
built in at the foundation; Ptolemy does not. This enables Ptolemy to mix different models of
computation, virtually without limitation, within the same system. While Ptolemy was first con-
ceived for simulations, it is a useful platform for constructing many types of software systems,
examples including multiprocessor code generators, telecommunications feature software,
hardware-software codesign, scientific computations, etc. Ptolemy is named after a famous astro-
nomer because of the extensive use of cosmological metaphors in its basic structure.

A key objective of Ptolemy is to allow many different computational models to coexist in
the same system. This is quite distinct from previous systems, where a single inflexible model of
computation is typically supported (event-driven simulation, message queue paradigm, time-
driven simulation, etc.) Ptolemy defines the concept of a domain.

Since the standard graphical user interface of Ptolemy displays block diagrams, it is con-
venient in Ptolemy to divide a computation into a set of blocks. A block is a module of code,
which is invoked at run-time, consumes data present at its inputs and generates data on its out-
puts, and that is allowed to run to completion once it is invoked. Typically "completion" means
deadlock, in the sense that all input data is consumed. This doesn’t limit the generality of
Ptolemy since literally anything can be embedded within a block (and in the limit the whole sys-
tem could be a single block!). But normally, we try to divide an application development into
blocks that are small and manageable and that communicate with one another through messages.
This allows the blocks to be developed and tested independently from one another. Ptolemy also
encourages developers to document blocks and store them in standard libraries; it accomplishes
this by providing a preprocessor that produces not only C++ code for the block but also a manual
entry describing its use. Thus, blocks in Ptolemy become modular, reusable software com-
ponents.

A domain in Ptolemy consists of a set of blocks that obey a common computational model.
Within a block-diagram representation, there are two aspects to the computational model:

g the semantics of how a block interacts with other blocks, and

g the operational semantics of the order of invocation of the blocks.



3

1.2. Models of Computation
Some examples of general-purpose domains that are currently available within Ptolemy or

are currently being designed include:

g Dynamic dataflow (DDF) is a general model for signal processing that includes asynchro-
nous operations, and is the model embodied in the predecessor system Blosim
[Mes84a,Mes84b]. In DDF, blocks consume generate data sporadically in data-dependent
fashion, and the order of block invocation is in accordance with data precedence relation-
ships. The DDF does not attempt to model the relative timing relationship of block invoca-
tions.

g Synchronous dataflow (SDF) [Lee87a] is an appropriate model for signal processing sys-
tems with rationally-related sampling rates throughout, and is the model used exclusively in
the predecessor system Gabriel [Lee89a]. In SDF, blocks consume and generate a static and
known number of data tokens on each invocation. Advantages of SDF are ease of program-
ming (since the availability of data tokens is static and doesn’t need to be checked), a
greater degree of setup-time syntax checking (since sample-rate inconsistencies are easily
detected by the system), and run-time efficiency (since the ordering of block invocation is
statically determined at setup-time rather than dynamically at run-time).

g Discrete event (DE) is a model in which only changes in system state (called events) are
modeled. This is an asynchronous model like DDF, but unlike DDF incorporates the con-
cept of global time in the system, and orders block invocations properly in time. A com-
pletely general simulation system could be developed in the DE domain, at the expense of
run-time efficiency and ease and naturalness of programming for many applications like
signal processing.

g Message queue (MQ) is a model similar to DDF but with many more capabilities for
dynamically creating and destroying blocks. The MQ domain is another experimental
domain under development targeted at software control applications, such as telephone
switching call-processing software.

In addition to these general-purpose domains, the capability to create domains out of previously-
existing simulation systems has been demonstrated with the Capsim domain (incorporating the
Capsim signal processing system [Fab] that is based on Blosim) and the Thor domain (incorporat-
ing the Thor hardware timing simulator [Thor]).

1.3. Design Goals
Ptolemy is motivated by the increasingly important role of high-level system design, the

increasing proliferation of simulation platforms and computational models, and the increasing
need to combine these computational models. Some of the goals of Ptolemy include:

g Do not limit the generality by building unnecessary assumptions or limitations into the
basic system. Rather, provide a set of building blocks that can be profitably used to more
effortlessly construct future systems.

g Specify each subsystem of an application using a domain most natural for that subsystem,
and yet seamlessly combined with other subsystems to form a heterogeneous whole.

g Accept without modification subsystem descriptions from previous simulation platforms,
where appropriate, and integrate them seamlessly into a Ptolemy simulation.

g Allow future domains to be added without any modifications required to Ptolemy itself or
previous models and schedulers.



4

g Encourage users to build reusable software components by defining standard interfaces
among components, standard documentation procedures, and version management.

2. EXAMPLE OF A MIXED-DOMAIN SIMULATION
To illustrate the application of Ptolemy consider the simulation of a broadband packet net-

work. In figure 1a, a high-level view of a terminal for a broadband packet network is shown,
emphasizing the partitioning of functionality into signaling and control (call establishment, flow
control, multimedia synchronization, etc.), and packet network. Typically the speed of the con-
trol components is sufficiently high that their detailed timing can be neglected, in which case a
domain such as MQ is suitable for their modeling. In contrast, the propagation delays in network
links and in the control messages between control nodes are often critical to synchronization
issues, and should be modeled with detailed timing, such as in the DE domain. In figure 1b, the
network transport of one specific service — packet speech — is illustrated. This transport divides
into two pieces, the signal processing (compression, silence detection) that is best modeled with a
time-driven synchronous sampling rate (like the SDF domain), while the network (packet
assembly/disassembly, switching and queueing) is best modeled by only changes in system state
(like the DE domain).

All these distinct system components interact in important ways that need to be studied by
simulation. Especially in multimedia services (combinations of video, voice, data) there is
interaction between the control and transport components. In the speech portion, statistical net-
work delays and packet loss interacts with the signal processing design. Ptolemy allows these
interaction issues to be studied, while maintaining a natural representation of each system com-
ponent.

COMPRESS

SILENCE

DETECTION

PACKET

ASSEMBLY
NETWORK

PACKET
DISASSEMBLY
AND BUFFER

DECOMPRESSSPEECH

EVENT-DRIVENTIME-DRIVEN TIME-DRIVEN

(b)

(a)

CONTROL

SIGNALING

PACKET

NETWORK

TERMINAL TERMINALUSER USER

Figure 1. A packet speech system simulation requires the combination of signal processing
(compression, silence detection) and queueing (packet assembly/disassembly and packet tran-
sport).



5

3. ACHIEVING HETEROGENEITY — POLYMORPHISM

3.1. Messages in Ptolemy
We can illustrate the use of polymorphism in Ptolemy first by looking at the form of data or

messages that pass between blocks.

Because of the common base class, all messages can be dealt with as Particles regard-
less of what type of information or data they contain. Ptolemy is simply not cognizant of all the
different types of Particles that inherit base class Particle, and hence new types of
Particles can be added to Ptolemy without affecting any of the Ptolemy code.

Shown in figure 2 is a representative set of methods for Particle (the list of methods in
all our examples is actually much longer) including:

g initialize() sets a default value for a Particle, such as zero for a FloatSample. (All
objects in Ptolemy have an initialize() method, used to begin or restart a simulation.)

g operator float() converts a Particle to a float value, if that makes sense (for exam-
ple if it is an IntSample or FloatSample). If it does not make sense, for example if
the Particle is a SpeechPacket, then a value of zero is returned with a proper error
message. In addition, an error condition is asserted that will cause the scheduler to halt;
eventually, exceptions will be used to accomplish this more cleanly.

g operator =() is the assignment operator, which allows one Particle to be copied to
another identical type of Particle.

g clone() creates a new Particle of the same type. Initially Ptolemy maintains a list of
prototype Particles of all known types, and new Particles can easily be created by
this prototype using this method.

g print() turns a Particle into a character string in some appropriate format, useful for
printing it out to the user interface.

All these methods are virtual, which permits, for example, automatic type coercion when, for
example, a block that produces integers is connected to a block that expects complex values.
Examples of types that can be derived from base class Particle are also shown in figure
2 (the inheritance hierarchy is somewhat simplified).

print()

clone()

operator = ()

operator float()

initialize()

Particle

SpeechPacket

VideoFrameVideoBlock

PacketSample

Matrix

FloatSample

Particle

ComplexSample

Figure 2. All messages in Ptolemy are derived from a base class Particle. Some
representative methods of this base class are shown, as well as some typical types of Par-
ticles that can be derived from Particle.



6

During execution of complex simulations, large numbers of Particles are (at least con-
ceptually) created and destroyed. To make Ptolemy as efficient as possible, pools are maintained
of fixed-size objects such as IntSample and ComplexSample; PacketSample uses a
reference-count mechanism so that pointers, rather than whole objects, are copied as particles
move around the system.

3.2. Functional Blocks in Ptolemy
The basic module of computation in Ptolemy is the Block, illustrated in figure 3. An

atomic block, called a Star, is a type of object that typically performs some unit of computa-
tion within the simulation, and communicates with the outside world through a stream of Par-
ticles passing through its PortHoles, always of the same type. For the most part, Parti-
cles either leave or enter a given PortHole, but not both; however, bidirectional ports are
possible and are used in the Thor and MQ domains.

There are many different types of Stars, but they all interface to Ptolemy and to each
other in a standardized way through polymorphism. The only constraint is the basic interface that
must be provided, and certain standard methods that must be provided. A sampling of methods is
shown in figure 3:

g The four stages of a simulation are initialize() (allocate memory for data structures, etc.),
start() (set internal parameters and state variables, etc. at the start of a new simulation), go()
(perform one step of the simulation), and wrapup() (collecting statistics etc.).

g clone() makes a copy of this type of Block, for example to create another instance.

g mySched() returns the Scheduler for this Block (more on Schedulers later).

g domain() returns the name of the domain within which this Block is intended to operate.

Also shown in figure 3 is an inheritance diagram illustrating how customized PortHoles can
be created for different domains. In particular, it is shown how input and output PortHoles
customized to the SDF domain are inherited from the base class PortHole.

domain()

clone()

wrapup()

start()

initialize()

Block

sendData()

grabData()

far()

initialize()

PortHole

OutSDFPortHoleInSDFPortHole

OutPortHoleInPortHole

PortHole

Block
PortHole

Figure 3. The class Block models certain behavior common to all computational units in
Ptolemy. PortHoles are the interface to other Blocks, where each PortHole carries a
stream of Particles. Derived types of Blocks are shown later in figure 5. Also illustrated
are some of the typical methods in class Block.



7

3.3. Schedulers
The function of the Scheduler is to determine the order in which Blocks are exe-

cuted. For example, the basic difference between the time-driven and event-driven styles of
simulation is the way in which the order of the Block invocation is determined. Some of the
methods of class Scheduler are shown in figure 4, including setup() and run() which per-
form the compile-time and run-time scheduling functions respectively, and setStopTime() which
tells the Scheduler before a run() the period of time to allow to elapse before stopping. Dif-
ferent Schedulers corresponding to different domains simply substitute different implementa-
tions of these methods. For example, in the SDF domain setup() establishes a static order of
invocation of the Blocks, and run() then simply executes that invocation order repetitively until
the criterion of setStopTime() is established. In the DE domain, most of the activity is in method
run(), which manages an event queue for the dynamic ordering of Block invocation.

3.4. Parameters and States
Ptolemy provides a group of classes derived from class State for use as parameters and

state variables for functional blocks. Derived classes provide states of various types, for example,
IntState, FloatArrayState, StringState. Each state has two values: the first, pro-
vided by the base class, is a character string that holds an expression used to initialize the state;
the second, whose type matches that of the state, is the run-time value of the state. Each type of
state provides a recursive-descent parser that evaluates the initializing expression when execution
begins; these expressions look much like arithmetic expressions in C or C++. A state belonging
to a galaxy may have its name used in expressions for states belonging to blocks within that
galaxy; this permits galaxies to have parameters that affect the operation of the blocks they con-
tain.

States have attributes that indicate whether their values can change at runtime or not (as
well as other properties of the state); these attributes may be changed by derivation. For example,
class SDFFIR, an finite impulse response filter star, has a fixed FloatArrayState specify-
ing the filter taps; class SDFLMS, an adaptive filter using the LMS algorithm, is derived from
SDFFIR; since the filter is adaptive the filter taps now change.

Scheduler

setup()

run()

setStopTime()

resetStopTime()

Scheduler

XXXScheduler YYYScheduler

Figure 4. An example of inheritance and some selected methods for a Scheduler.



8

4. DOMAINS and WORMHOLES
The key concepts in Ptolemy that support heterogeneous simulations are the domain and the

Wormhole. Thus far the basic module of simulation, the Block, has been described, but in
fact there are several distinct types of Blocks. A simplified inheritance diagram for Blocks is
shown in figure 5.

At the top level, class Block contains instance data and methods associated with the
PortHoles of the Block, as well as its name and other relevant data. In addition, base
class Runnable encompasses the instance data necessary for those blocks that have an inter-
nal Scheduler, such as a pointer to the Scheduler itself. The Galaxy and the Star
are the two basic types of Block. The Galaxy is a Block that internally contains a collec-
tion of interconnected Blocks; thus, it is provided solely for the purpose of a hierarchical
description of Blocks. All the Blocks in a Galaxy are assumed to be homogeneous with
respect to the Scheduler (for example, they all use a time-driven or an event-driven
Scheduler). Stars on the other hand are considered atomic or indivisible. This is illus-
trated in figure 6a, where a Galaxy contains Stars and other Galaxys.

At the first stage of description of the cosmology of a particular simulation, the Galaxys
are flattened, and the hierarchical description is converted into a non-hierarchical description of

Universe

XXXWormHole

XXXStar

XXXUniverse

WormHole

Runnable

Galaxy Star

Block

Figure 5. An inheritance diagram for Blocks, and some classes derived from Block. The
class Runnable includes methods required for blocks that have an internal Scheduler.
Shown are the classes needed to execute a fictitious domain "XXX".

(b)(a)

Galaxy

Stars

Galaxy

Galaxies

Stars

Figure 6. A Galaxy is a Block that internally contains a collection of Stars and Galaxys.
(a) Before flattening, and (b) after flattening.



9

interconnected Stars. This is illustrated in figure 6b. The basic difference between a
Galaxy and a Star, then, is that schedulers can ‘‘see’’ the internal structure of Galaxy
objects but not of Star objects. When the simulation actually commences, a simulation con-
sists of only Stars. As we will see, this does not mean that it is not hierarchical, but only that
the simple form of hierarchy embodied in the Galaxy has been removed by flattening.

Within a given domain, all the Stars behave in a fashion appropriate for that domain, and
there is a single Scheduler that assumes that behavior. For example, in figure 5 we show the
inheritance diagram for a single domain, a fictitious domain XXX (where "XXX" might be
"SDF", or "DE", etc.). In this domain, there is an XXXScheduler and an XXXStar, where
XXXStar has behaves in a manner expected by the XXXScheduler.

The outermost Block, which contains the entire simulation, is known as the Universe.
The Universe consists internally of a Galaxy and an associated Scheduler, and hence it
inherits the characteristics of both a Galaxy and a Runnable. In our simplified cosmology
of figure 5 there is only one type of Universe, the XXXUniverse. The internal structure of
the XXXUniverse is illustrated in figure 7.

Different domains can be realized by implementing different Universes, each containing
an appropriate Scheduler. This does not by itself, however, allow multiple domains to coex-
ist. Multiple domains interact by means of the special object Wormhole. The Wormhole is a
special type of Star that behaves externally like any other Star, and thus can be freely mixed
with other Stars of the same type. Internally, however, the Wormhole is special — it is like
a Universe in that it contains its own Scheduler, which is always a different
Scheduler from the one invoking the Wormhole externally. A Wormhole also contains
an internal Galaxy, and in this respect is similar to a Universe. Roughly speaking, we can
think of a Wormhole as a special Universe that unlike a normal Universe has
PortHoles. Continuing this analogy, a Wormhole is like a Star that internally contains
another Universe !

An example that illustrates the use of a Wormhole to mix two fictitious domains, "XXX"
and "YYY" is shown in figure 8. For this example, a single XXXWormhole of YYY domain
resides in an XXXUniverse with other XXXStars, where it appears and behaves just as if it
were an XXXStar. Internal to the XXXWormhole, the YYYStars are invoked by a YYYS-
cheduler.

The way in which polymorphism makes Stars and Wormholes look identical exter-
nally is illustrated in figure 9 (which is highly simplified). The start() and go() methods of these

XXXUniverse

XXXScheduler

XXXStars

Figure 7. The internal structure of an XXXUniverse.



10

XXXStars
YYYStars

YYYScheduler

XXXScheduler

XXXUniverse

XXXWormhole

Figure 8. An example of a Wormhole, namely an XXXWormhole resides in an
XXXUniverse with a collection of other XXXStars.

XXXWormHoleXXXStar

Star

start()

go()

start()

{/* initialize */}

go()

{/* process */}

go()

start()

{/* make schedule */}

{/* run schedule */}

Figure 9. How polymorphism makes Wormholes and Stars look identical externally.

two classes perform quite different functions. For a Star, they perform some direct simulation
function, and for a Wormhole they call Scheduler compile-time and run-time methods for
the Blocks within the Wormhole. The externally visible effect is the same: a Wormhole
looks like a Star from the outside, a principle that must be remembered in designing a
Wormhole for a specific domain.

To summarize, a Wormhole embeds a heterogeneous domain into a Ptolemy simulation,
where the external domain is not even aware that one or more Stars actually contain an entire
foreign domain. As shown in figure 5, an XXXWormhole assumes the properties of both an
XXXStar (which is how it appears externally), and also a Wormhole inheriting a Runnable
(because unlike vanilla Stars it also contains an internal Scheduler).

4.1. Event Horizon and Universal Event Horizon
The PortHoles of a Wormhole are special in that they perform a conversion function

between different Schedulers. Because of this crucial interface, the boundary between the
input and output of a Wormhole is implemented by a special class EventHorizon.



11

There are some domain-specific operations to do in the EventHorizon. We could cus-
tomize each domain interface by defining a EventHorizon class for each pair of domains.
This approach is not attractive since if we have N domains, we would need N 2 types of
EventHorizon. Worse, if a user wants to add a new domain into Ptolemy, he or she would
need to know the details of the existing domains to design the EventHorizons, and those
designs might need to be modified.

To avoid these difficulties, we have designed a universal EventHorizon, where each
domain has only a pair of EventHorizons. Now, we have only 2N EventHorizons for N
domains, and each domain is totally independent of the others. All Particles passing into
and out of a Wormhole actually pass through a pair of EventHorizons of which one is
from the outside domain and the other is from the inside domain. This mechanism depends on
the assumption that the tasks of domain interface can be cleanly divided into some tasks of the
outside domain and the other of the inside domain, where the boundary is called the universal
EventHorizon. We consider this approach experimental since it has been tried on a relatively
few domains.

The idea of the universal EventHorizon is illustrated in figure 10. An input
PortHole of a XXXWormhole of YYY domain residing in an XXXUniverse internally
consists of two EventHorizons, an XXXtoUniversal and a YYYfromUniversal.
These two objects together perform the tasks of domain interface while delivering the Parti-
cles from the outside to the inside domain. Similarly, an output PortHole of the Wormhole
consists of a YYYtoUniversal and an XXXfromUniversal. Also shown is an inheri-
tance diagram, where we see that ultimately these classes are PortHoles.

XXXtoUniversal

YYYfromUniversal

XXXUniverse

PortHole

EventHorizon

FromEventHorizon ToEventHorizon

YYYfromUniversal XXXtoUniversal

XXXWormHole

Figure 10. Illustration of the universal EventHorizon, where particles to and from a
XXXWormhole of YYY domain pass through a pair of EventHorizons.



12

5. PUTTING THE PIECES TOGETHER
Ptolemy makes repeated use of several simple concepts to keep track of what functional

blocks exist, what domains are supported, and to provide mechanisms for building simulations.

The first major concept is that of the prototype instance and cloning. Given a list (or other
data structure) of objects of different types but a common base class, each indexed by a name (a
character string), it is possible to create a new instance of a class by specifying its name, search-
ing the list for a match, and, when the match is found, calling the virtual clone() function on
the matching object. This technique is used in Ptolemy to allow for the dynamic creation of
many types of objects.

However, we want to avoid introducing an explicit ‘‘master list’’ anywhere in the system.
We would prefer to simply link together object files that contain prototype instances of all the
classes we wish to support, and have the linking process somehow create the master list. To do
this, we introduce classes of dummy objects whose constructors serve the function of building
these lists.

The KnownBlock class manages the collection of blocks known to the system. A
separate list of blocks is maintained for each domain. By convention, stars in a particular domain
have a class name that is formed by concatenating the domain name with the ‘‘user interface’’
name; for example, the Fork star in the SDF domain is of class SDFFork. It is not necessarily
true that each object on the list is of a different class, however; all galaxies created by means of
the user interface are of class InterpGalaxy (described later).

As hinted above, we construct objects of class KnownBlock for their side effects only.
Constructors have a very desirable property: when a global or ‘‘file-static’’ object is created, its
constructor is called before execution of the program begins. We exploit this feature to create the
known list of blocks, without requiring that any table appears anywhere in the programming giv-
ing a list of exactly which blocks are in the system.

It works as follows: class KnownBlock has a constructor that takes two arguments: a
reference to a Block, and a const char*; the latter argument specifies the ‘‘user interface’’
name of the block. The constructor adds the block to the known list for its domain (there is a
separate list for each domain), indexed by the supplied name. The static member function
KnownBlock::clone, which takes a single argument, a const char*, creates a new Block of
the given type from the list corresponding to the current domain. All of KnownBlock’s
member functions are static except for the constructor, which is called only for its side effects.
The effect of constructing a KnownBlock object is to register a block on the known list. We use
this feature to advantage when we define new stars (or other types of blocks): if we say

static SDFFIR proto;
static KnownBlock entry(proto,"FIR");

in the file that defines class SDFFIR (e.g. a finite impulse response filter in the SDF domain), and
also implement the member function

Block* SDFFIR::clone() const { return new SDFFIR;}

that’s all we need to have this scheme work. To make it easier, we provide a preprocessor to
write stars; the preprocessor allows member functions to be written in C++ while inserting the
‘‘boilerplate’’ code for supporting the prototype instance, the clone function, and certain standard
initializations for PortHoles and States.



13

This scheme suggests a very natural approach to extending the system with incremental
linking: if we can arrange to load in new object files and call the static constructors in the file, we
have then extended the system and we know about a new functional block, and there is no strong
distinction between a block added this way and one that was compiled in (actually there is a dis-
tinction, in that we flag blocks that are incrementally loaded and permit them to be redefined, but
we cannot at present redefine compiled-in stars (the linker would complain about duplicate sym-
bols, though in theory we could modify the linker). This scheme is similar to the system
described in [Dor90], though it was developed independently.

The exact code required to call the global constructors in an object file is implementation-
specific, but the general procedure is almost identical in, for example, g++ and compilers derived
from AT&T’s cfront. There are also differences depending on the format of the object files:
BSD-style or COFF. In any case, the general approach is to use the incremental linking facilities
of the Unix linker on all these systems, and to somehow call the constructors for the global
objects after the code is loaded in. At present, we support incremental linking with g++ on all
the platforms that Ptolemy runs on: the Sun-3, Sun-4 (Sparc), Vax, and DecStation (MIPS). The
DecStation uses COFF so the details of the incremental link are different. We also support incre-
mental linking under Sun C++ (based on the 2.1 version of cfront).

To allow the user to build and run a Universe out of system-supplied and user-written
blocks, a dynamic galaxy class, InterpGalaxy, is provided. This class, which is derived
from Galaxy, has the ability to modify itself by adding new stars, adding new connections
between stars, adding aliases (mappings between portholes belonging to the galaxy and those
belonging to interior stars), adding states, setting values for states of member stars, or removing
stars and connections. Finally, it can add itself to the known list maintained by KnownBlock, and
its clone function is capable of making a duplicate galaxy. All of its arguments can be specified
solely with character strings: add a block of type ‘‘FloatRamp’’ and name it ‘‘source’’, etc. User
interfaces use objects of this class, and of the class InterpUniverse (derived from
InterpGalaxy and Runnable), to create and execute a ‘‘world’’.

It is undesirable to require the user interface to know any of the details of a specific domain.
For that reason, there is a class named Domain that manages all the information about a
domain: how to create a scheduler, a wormhole, or EventHorizons for that domain, for
example. To implement a new domain, a new class, for example, SDFDomain, is created, and a
single prototype instance is constructed. Again, as for blocks, this prototype instance is added to
a master list, and the system now knows how to create SDF universes, by searching the domain
object list for the ‘‘SDF’’ object and asking that object.

Ptolemy provides two very different user interfaces, a text-based interpreter that accepts a
Lisp-like language, and a graphical interface based on VEM, the graphic editor that is part of
Berkeley’s Octtools CAD system [Har89]. The interpreter is implemented as a class and is clean
enough to embed in other programs. The graphic interface, on the other hand, was ported from
the Gabriel system [Lee89] and is quite a bit harder to maintain. Both user interfaces work, for
the most part, by translating user commands into requests to objects of class InterpGalaxy
and InterpUniverse to build and execute simulations.



14

6. COMMENTS ON OUR EXPERIENCE WITH C++
In this section we discuss our experience with the C++ language and how we dealt with

several issues that are controversial in the C++ community (as judged primarily be discussion in
the Usenet newsgroup comp.lang.c++ and in papers such as [Car91]).

When the Ptolemy project began, none of us had any experience with an object-oriented
programming language. As several of us had extensive experience with the management of
medium- to large-scale software systems, we had a good grasp of the importance of data abstrac-
tion and information hiding, but nethertheless, we needed to learn by doing.

As Ptolemy was not the first system of its kind, we did not have difficulty determining what
some of the key objects were; while there have been changes in the inheritance hierarchy, the
major classes chosen when Ptolemy was first conceived − Block, Star, Galaxy,
Universe, PortHole, and some others − still play the same roles. The first version had
many public data members and did not use const; fortunately, these conditions were corrected
before the project grew too large (though some public data members remain).

We find that Ptolemy is much easier to modify and extend than Lisp or C based systems of
similar size; in fact, we are frequently reminded of this because one portion of Ptolemy, the por-
tion of the graphical interface that connects to the VEM graphic editor, is written mostly in C,
and it is far harder to modify than the rest of Ptolemy. The primary reason for this is type-testing:
a different action must take place depending on the type of icon the mouse is pointing to when a
command is executed, for example. In C++, this is handled neatly by virtual functions; in this
particular C program, when a new type is added, modifications must be made at many points in
the code. We have delayed rewriting of this code in C++ because of lack of resources, though we
have probably paid the equivalent cost in extra maintenance time.

C++ provides no mechanism to accomplish certain repetitive tasks that are required in
Ptolemy, particularly the following:

g We wish to refer to certain objects (states, in particular) through user interfaces by the same
names as are used by the programmer in writing the code, so that if the user specifies an ille-
gal value for state ‘‘bar’’, which is in star ‘‘foo’’ in galaxy ‘‘fred’’, the error message can refer
to ‘‘fred.foo.bar’’. This is easily accomplished by associating a string ‘‘bar’’ with the state
named bar, but this is highly error-prone; every name must be typed at least twice.

g We create new instances of stars and galaxies by cloning, so that each star must redefine the
clone method to call its copy constructor, as follows:

Block* MyPersonalBlock::clone() const
{

return new MyPersonalBlock(*this);
}

We wrote a preprocessor to allow the user to avoid typing in the standard ‘‘boilerplate’’
code (to provide names for objects and the clone method) when defining new stars; we also
extended the preprocessor to generate documentation for the star in addition to its C++ code.
This has been invaluable in producing an accurate, up-to-date manual for the system. Still, we
were disappointed that the template proposal of [Ell90] is not powerful enough to generate the
clone method as discussed above.

Because objects are created by a method that returns nothing but a pointer to Block, and
because entirely new classes can be created by incremental linking, it is clearly not possible to do
all type-checking at runtime. There are two places where a runtime type check may be necessary:



15

we must check that the stars in a galaxy are compatible with the current domain, and we must
check, for stars that process packets, that a packet received by the star is of a type that can be pro-
cessed by that star. For this purpose we use an isA method: the isA member function returns
true if it is given the name of the class, or of any base class, of an object for which it is defined.
Should isA return true, we then cast the pointer to the appropriate derived type. While there is
some controversy in the C++ community about such things, in this case it is clearly necessary,
though we have some concerns about the portability of the pointer downcasts in the scheme in the
presence of multiple inheritance. We therefore welcome Stroustrup’s proposal for ptr_cast
and ref_cast in section 13.5 of [Str91], which, if accepted by the C++ community, provides a
safer way of solving this problem.

The other uses of pointer casts in Ptolemy are primarily in container classes; we anticipate
rewriting such classes to use templates when they become more commonly available.

We have done our best to use multiple inheritance as little as possible. We do not take a
position as extreme as [Car91]; however, our early attempts to use multiple inheritance with vir-
tual base classes convinced us that virtual base classes, at least, are to be avoided where possible,
and, at least in our code, it has always been possible to do so. We find multiple inheritance much
easier to deal with when virtual base classes are not involved, and we find single inheritance
easier to deal with than multiple inheritance. We have restricted the use of multiple inheritance
to situations where there are truly two ‘‘is-A’’ relationships to frequently used base classes.

7. CONCLUSIONS
The kernel of Ptolemy is fully implemented, and has been demonstrated in the context of

numerous small examples. While many enhancements to this kernel are planned, the focus of the
simulation portion of the Ptolemy project has now shifted to demonstrating a number of applica-
tions, and extensions to rapid prototyping. Currently, a large simulation of a multimedia packet
speech and video network is under way, both to exercise Ptolemy and to show its utility. Further,
the signal processing code generation capabilities of Gabriel are being re-implemented in
Ptolemy, and additional code generation work that generalizes the SDF code generation model
that was used in Gabriel and for embedded microcontroller applications is being pursued. A
number of other applications of hardware-software co-design are being explored, including
software for signaling and control of telecommunications switches. One of the goals is to demon-
strate rapid prototyping of systems having hardware and software components, using the reusable
software module approach that is natural within Ptolemy.

8. ACKNOWLEDGMENTS
Other than the authors, key contributors to Ptolemy include Ichiro Kuroda of NEC, who

contributed to the development of the state handling mechanism, Edwin Goei, who contributed to
the graphical interface, Wan-Teh Chang. who enhanced the graphical interface, and Andrea
Casotto, who provided modifications and improvements to VEM that have considerably
improved the user interface. Several people have had a major impact on the development of
Ptolemy through their major efforts on its predecessor, Gabriel. Phil Lapsley has had incalcul-
able impact on the directory structure, project management, documentation, and code generation
efforts in Ptolemy. The first version of the graphical interface was written by Holly Heine.

A variety of sponsors have directly or indirectly supported Ptolemy, including the Defense
Advanced Projects Agency (DARPA), the Semiconductor Research Corporation (SRC), the
National Science Foundation, the State of California MICRO Program, Motorola, Hughes Net-
work Systems, Bell Northern Research, Sony, Hitachi, NEC, US West, and Comdisco Systems.
Many other sponsors have contributed indirectly by supporting Gabriel, the predecessor.


